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Variational Principles for Heat Transfer

BRUCE A. FINLAYSON
University of Washington
Seattle, Washington 98195

1. TERMINOLOGY

A variational principle is based on a functional, which is a correspon-
dence assigning a real number to each function in a given class of functions.
The functional is made stationary (preferably, but not always, a minimum)
with respect to changes or variations in the function. This terminology
agrees with the classical development (see [1,2,3]). In this paper, so-called
variaticnal principles which do not have a functional, or for which the func-
tional is not stationary, are called quasi-variational principles or restrict-
ed variational principles.

This distinction is similar to the distinction between d'Alembert's
principle and Hamilton's principle for the movement of a system of particles.
D'Alembert's principle is

N
~
- - . = 1
sw = (B, - m AR =0 0]
k=1
where Fi is the net force on the k-th particle, my and A, are the mass and
acceleration of the k-th particle. The virtual work OW is a differential

form,_i.e., there is no W whose variation gives &W. The SRk is an infinitesi-
mal displacement. Hamilton's principle is obtained by integrating over time.

fa
Aif Lde, L ST - V. (2)

2 2
~~
S Swdt = 6S (T - V)de. (3)

17



18 NUMERICAL PROPERTIES AND METHODOLOGIES

Here T is the kinetic energy, V is the potential energy, L is the Lagrangian
and A is the action integral. Such a formulation is possible if the forces
are derivable from a potential. Note that in Hamilton's principle a function-
al, A, exists and is made stationary. Hamilton's principle is thus a true
variational principle whereas d'Alembert's principle is a quasi-variational
principle.

2. FRECHET DERIVATIVES

The scientist and engineer usually have a differential or integral equa-
tion and the question arises whether or not a variational principle exists for
that equation. Fréchet derivatives are used to answer this question [4].
Consider the differential equation, possibly nonlinear

N(u) = 0. (4)
The Fréchet differential of the operator N in the direction ¢ is

. N(u+ed) - N(u) _ 3
ip —————— = —

o (5)

[N(u+es))

€0 € € =0

d), is the Fréchet derivative of the operator N. A variational principle
exists if the operator N& is symmetric.

g\b N' ¢dV = S@N' ydv. (6)
u u

This condition is applied below to answer the question of whetner a variation-
al principle exists for various forms of the heat transfer equations. The
application is described in detail elsewhere [4].

3. VARIATIONAL PRINCIPLES

3.1 Steady-State, Linear Heat Conduction

The equations for temperature, T, are

V-(kVT) = £(x) in V, (7
T=T, (%) on S (8)
-kn-VT = qz(x) on §,, (9)
-kn*VT = h(T-Ty(x)) on s,, (10}

where the thermal conductivity, k, and heat transfer coefficient, h,
are functions of position, but not temperature. The functions, Ti1, q9,
and T3 are specified on their respective boundaries, which may be null.
The variational principle is
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$(T) = j[l/ZkV’l"VT + Tf(x)] dv
v

+ S 4,TdS + 1/2 g h(T-Ts)zdS, (1)

82 s3

and the function ¢ is to be made stationary among functions T satisfying
T =1T) on S; and which are continuous with pilecewise continuous first
derivatives. Note that for each function T there is a real number ¢,
making ¢ a functional, and the variations of ¢ with respect to T lead to

Eq. (7) as Euler equation and Eq. (9-10) as natural boundary conditions.
The variations give:

60 = dd(T +eb T)
de

€ =0

j [kVT-V6T + 8T £(x))av
v

+ fqz §TdS + JA h (T-T,) Tds. (12)

5, 84

Using the divergence theorem and setting §¢ = 0 gives

8T [-v-(kyT) + £(x)]dv

+

6T [q2 + kn°yT]lds + ~{ﬁ 5T[h(T-T3) + kn-yT]ds

)

NCD: <

+ 8T kn'yTds = 0, (13)
s

—

Since 8T = 0 on S; (the trial function must satisfy T = Ty on S;) the
last integral vanishes. The remaining integrands in Eq. (13) are the

desired differential equation (7), and natural boundary conditions (9-10).

19



20 NUMERICAL PROPERTIES AND METHODOLOGIES

3.2 Steady-State, Nonlinear Heat Conduction

When k and h depend on temperature, we make the transformation

T
$= g k(g)dg, V¢ = kyT. (14)

To

This leads to equations of the form Eq. (7-10) except that Eq. (10) be-

comes

-nV¢ = h(g)[g(¢) - g(¢3)] on §,. (15)

g(¢) is the inverse transformation of Eq. (14). The boundary term on

S3 in Eq. (11) is then

¢
S' f h(&)[glg) - g(¢3)] dgds. (16)
53 43

Thus nonlinear functions k{(T) and/or h(T) can be handled.

1f the boundary condition is a radiation condition

k() 9T = h()(17-T5), (17)

then the boundary term on S3 is

T
n_.n h o+l n+l n
r f h(g"-T;)dgds f (g (T -T3 ) - hTg (T-T,))ds.  (18)
S, T, S,

Thus, simple radiation boundary conditions can be handled with varia-
tional principles.

If the heat generation term is nonlinear, as in reaction-diffusion
problems or combustion problems, a variaticnal principle also exists.
For example, consider the following equation.

921 = ol (19)

T

ol
By letting N(T) = VT - e° we obtain the Fréchet differential from Eq.

).
N = 72y —els. (20)
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Equation (6) then becomes

B

S[¢V2¢ - eTw¢]dv ‘f[¢V2¢ - eT¢¢]dv. (21)

The divergence theorem can be used to show that these are the same under
appropriate boundary conditions. For the more general equation,

V. (kVT) = f(x,T), (22)

the variational integral is an extension of Eq. (11), with the term
Tf(x) replaced by

T
J‘ £(x,£)dg, (23)

T
o

with T, an arbitrary reference temperature.

The Euler equation comes frnm
\Y §T [V (kx9T) - £(x,T)]dV = 0. (24)
v

3.3 Steady-State, Linear Heat Convection
The enuation for combined heat conduction and convection is
2
u-9T = av'T, (25)
where u is a known velocity field and a is the thermal diffusivity.

Fréchet derivatives show that no variational principle exists for Eq.
(25). Equation (6) applied to the troublescme convection term is

jlbg'V‘de # jqbg'vlbdv. (26)
Tne Fréchet derivative is not symmetric.

If an integrating factor is used,

g(T,VT)[g-VT - aVZT] =0, (27)

then Fréchet derivatives give a variational principle only if the
velocity is derivable from a potential [4],

u = -va. (28)

The integrating factor is g = exp(Q/a) and the variational integral is
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o(T) = % f exp(R/a)VT VTV
v

- f exp (2/a) % (T—Ts)zds. (29)

Since velocity fields are given by Eq. (28) only in unusual cases, a
variational principle seldom applies to heat convection. Even this
transformation does not work if the thermal conductivity depends on
temperature [4].

3.4 Unsteady-State, Linear Heat Conduction

Another complication 1s the unsteady-state problem:

T 2,
5t = oV T, (30)
T = To at t = 0, (31)
T = Tl on Sl. (32)

Fréchet derivatives show that a variational principle does not exist for
the equation in this form [4]. The Laplace transform can be taken, and
then a variational principle exists.

With T = 1{T1] 33)
the Laplace transform of Eq. (30-31) is

6T - T, = av’T, (34)

T = T1 on Sl. (35)

We divide by s and provide a variational functional
= la = =.1=2 1l
(T wf EE 5 VIV + 5 T -3T -ro]dv. (36)
v
The variation gives
= a 2= — 1
8¢ fcs'r -V T+T~-51 v =0. (37)

v
Gurtin [5] used convolution integrals to provide a variational
principle:

o(T;t) = % f [T*T + a*VT*VT - ZTO*T]dV. (38)

\Y
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The convolution is defined as

t
f u¥*y qV = f '(. u(C-T,f)V(T,f)deV, (39)
v v 0

and the variation of Eq. (38) gives the Euler equation
t
~ 2 - 2
=T = aVIT(T,x)dT = o*V T, (40)
o]
Eq. (40) is the integral version of Eq. (30).

Filippov and Skorokhodov [6] provide a variational integral involving
spatial integrals rather than temporal integrals for one-dimensional
problems:

2
3
O(T) =1 S g ix (gt’ v G g 2 goe)? + (g—i)zldxdt. (41)

3 a (o]

These last variational integrals, Eq. (38,41) are so specialized that
their extensions to nonlinear problems are not at all clear.

Equation (30) has an adjoint problem, and the techniques to find it
are described elsewhere [4].

aT* 2

- T = av ']‘*, (42)
T* =T at t=1t,, (43)

<) f
T* = T* ogn S. (44)

1 1

The "final" time is tg. A variational principle for the combined problem,
Eq. (30-32,42-44) was given by Morse and Feshback [7].

t
£
o[T,T*) = { f lavr-ors + 2 (T - T 0y
0 v

+

o

e
lTo(T* - T)]o dv, (45)
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Taking variations with respect to T gives the following equation.

T
t
40 = f X ot [-aVZT* - -g?-ldv +% f 8T [T* - T, Fav.  we)
0 \ v o

Since 6T = 0 at t = 0 and T* = T, at t = tg we get Eq. (42). Taking varia-
tions with respect to T* gives another equation.

e
- 2. . dT 1 t
6-1-*4) j‘ f §T* [-aV T + -ﬁ]dv + ff ST* (To - T] fdv. 1)
(o] \4

o

v
Since 6T*= 0 at t = tfg and T = Ty at t = 0 we get the Euler equation (30).
3.5 Applications to Unsteady-State Heat Conduction

We have thus provided four variational principles for the
unsteady-state heat conduction equation (30). In application these can
be shown to give identical results. When we apply Laplace transforms,
Eq. (36), we expand in a trial function

N
N1 -
T =T +Z aj(s)Tj(gg). (48)
3=l

(We consider only the case of T} a constant, for simplicity.) Eq. (37)

becomes
j T.(0) -2 9T + T - L1 jav = o0, (49)
i~ s s o
v
Since
t
-1 - -
L [uv]s= S. u(t-1) v(T1) dt (50)
[

we can take the inverse transform of Eq. (49) to get

t
S- T, (x) [-o.j 1-V2T(§,T)d1]dv + f T, (%) ITN(§,t)-T°]dV =0, (51)
v ° v
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Differentiating this once with respect to time gives

N
f 1,00 [ 2 (x,00 - av?1™x, ) )av = 0. (52)
v
This is identical to the Galerkin method applied to the same problem (30).

When we apply convolution integrals in Eq. (38), we use the trial
function

N
M1 e ) ai(6) T.00). (53)
j=1
The variation of Eq. (38) gives
§¢ = j §T* [T - u*vz'r - 'ro]dv = 0, (54)
v
Using Eq. (53) gives
80= g T, * [T - axv?r" - 1 _Jav = 0 (55)

\Y

t T
= S- g. Tj(g) [TN(§,T) - ﬁa aVZTN(§,C)d€ - T (x)]dv.  (56)

v o )
Differentiation of this twice with respect to t gives Eq. (52).

Next we apply the variational principle (41). This case is restrict-
ed to one dimension, a < x £ b, The first variation gives

t b X
_ 1 9 1 3T 86T
= g g (g 37 (T6T) + u—2 5 T3 (¢,t)dg j (g,t)dg
o a [o] o

2_1” %_T]d de. (57)

Henceforth we use w(x,t) = 6T(x,t). To obtain the correct Euler equations
we first prove some identities. The identification B.T. denotes terms
vhich can be evaluated on the boundary using the divergence theorem after
integration over x and/or t.

6
£08,t) sv( % (€,00dE ﬂ‘-’é“—) = & 0. (58)

a
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The following term is integrated by parts several times.

.S‘ f f(6,t)de dx = f ~— f(x,t)dx + B.T.

b b
= ﬁ = ow
K‘ T a5 dx + B.T. \S‘ T 3¢ 9%. (59)
a a
Next define a function h:
b

gh _ 9T . - aT
% " 3% (x,t) ; hix,t) S 5t (&,e)dE. (60)

a

Then the following integral can be integrated by parts several times.

b X b X
3T (x,¢) £6,0)d0dx = \ 2 | g6, )a0dx (61)
ot ox
b a b

a
b X b
= S‘ 5-3; (b f £(8,t)d0)dx - f h £(x,t)dx (62)
a b

a

X
S‘ g 3t (€,t)dg g g—‘ti (,t)dg dx + B.T, (63)

C
f = (’l\v)dt=f——wdt+5\'1‘%wt—dt (64)

()

Finally we use

and

? "2
9T dw Jd°T
S' -'&—)('den- wa?dx+B.T. (65)
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We now put these into Eq. (57). The first term uses Eq. (64) and
Eq. (59). The second term uses Eq. (63) while the third term uses Eq.

(65).
2q
--—2 5 £(8,t)d6
b

2

42 (x,t) g £(6,t)dd - w 21 T)axde + B.T. (66)

2 2
at 9x

o
L=d
n
;—-ﬁ
C——
R
wl‘v
L L]
Ql‘—-

X

b

Rearrangement of Eq. (66) gives the Euler equation.

t b X
2
0 =6 = g g - —3—}1 (w - ég £(6, £)d0)dxdt (67)
ot ox
[+ a

b

g‘ S ar _ 32 ';] g y ¥ (g,t)dEd0)dxdt, (68)

1f we use an expansion of the type in Eq. (53), where Tj
aj(t) is not, then w = Tj(x) and we get from Eq. (68)

gg [-1-” aT]T(x)dxdt=0 (69)
o a 3x

This is also equivalent to a Galerkin method.
Finally, in applying the fourth variational principle, the adjoint

variational principle, we expand T as in Eq. (53) and write a similar
expansion for T*.

ag(t) Tj(x). (70)

B
-
+
[ .
] r~1 =
M

Equation (47) then becomes

“f N
f S T.(0 (%1 + Tjav = 0 2%

0

(x) is known but

27



28 NUMERICAL PROPERTIES AND METHODOLOGIES

or the same as Eq. (52). Thus all four variational principles lead to
the same equations, and these are the same as applications of Galerkin's
method.

4. VARIATIONS ON THE VARIATIONAL PRINCIPLES

Sometimes the search for a variational principle is fruitless. If a
principle does not exist for the equation in one form, it may for another form
of the same equation, such as Egq. (27), or Eq. (36, 38, 41, 45). If all these
approaches fail a variational principle in the form of least-squares principle
of the Method of Weighted Residuals always holds. For example, for Eq. (30)
the variational integral can be taken as

t
T) = S g [ 2—'{ - uva ]2 dvdt. (72)
0 \Y

The trial functions must be smooth since higher derivatives appear in Eq. (72)
than Eq. (45), for example.

Reciprocal variational principles are sometimes useful for giving error
bounds or special meaning to the variational integral. Minimum variational
principles for eigenvalues can be used to give quite close upper and lower
bounds on eigenvalues. A variational principle may lead to error bounds on
the solution or proofs of uniqueness.

In applications the variational method will lead to symmetric matrices,
and the linear algebra problem is more quickly solved than one with unsymmetric
matrices. This is an important advantage over the Galerkin methed. If there
is a variational method applicable to a problem, the Galerkin method should be
applied in a way that leads to equivalence with the variational method which
is usually achieved by appropriate integration by parts. The variational
principle also identifies the natural and essential boundary conditions. By
contrast, the Galerkin method must be properly formulated to insure the bound-
ary conditions are physically meaningful.

The heat conduction equation has led to a variety of quasi-variatiomal
principles and restricted variational principles. Rosen [8] and Glansdorff
and Prigogine [local potential, 9] and Gyarmati [10] have constructed restrict-
ed variational principles--called restricted because certain variables are
held constant during the variation but then allowed to be variable.

For Eq. (30) in one-dimension their restricted principles give

b

O(T(x,8), T (x,t)) = S i1 e, @1
X, » Tg x,t T‘* Q'a—x) Jdx. (73)

a
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Formal variation of T, keeping To fixed, and use of integration by parts,
gives

b

T "2
sd = g 8T (a—a:— - -‘l—;-)dx + B.T. (74)
9x
a

This 1s clearly not the required equation, so now we set Ty, = T, even though
we could not do this_in Eq. (73). If T, were a given, known function, then
Eq. (74) would make § stationary. Use of Ty = T, however, destroys the
stationary character, as described by Finlayson and Scriven [11,4]. Thus

the functional is not even stationary. The same formal operations can be
used on any equation. The advantages attributed above to variational princi-
ples do not hold for such variational principles.

Biot [12] provides an alternative which is analogous to d'Alembert's
principle in that no functional exists. For Eq. (30) he introduces a new
heat-flow vector, defined such that

T = _V.H. (75)

The quasi~variational principle is stated as

H
g SH- (9T + .I_L)d\r =0, (76)
~ a ot
A
The Euler equation is
1 aH
T+S5=0 an

and if one takes the divergence of this equation and uses Eq. (75) one gets
Eq. (30). Biot uses this quasi-variational principle in some innovative ways,
as is also done in the heat integral method [13]. For heat conduction in a
slab, when the wall temperature has suddenly jumped, a heat penetration
distance is defined, and the approximate solution is defined over that
distance.

= (] - —% 42
T=0Q-7%

p—q(t)—
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Use of the quasi-variational principle gives an equation for q(t). Approaches
such as these, which can be done with Galerkin, integral and other methods,
are quite useful for engineering purposes.

Another attempt to obtaln a variational principle is provided by
Vujanovic [14]. He adds a term to Eq. (30).

2 2
mdl s ag 22, (79)
at at ax
The varilational integral is then
t b
1 9T.2 9T, 2
o(T) “? S g [m (a—t-) -a (x) ] et/m dxdt, (80)
o a

The first variation gilves
t b

2 2
50 =g g a'r[—m—a-;-ﬂ+a"—§] e'/™ axar + B.T.  (81)
ot ot x
[o] a

thus giving the right Euler equation, (79). Then Vujanovic sets m=0 to turn
Eq. (79) into Eq. (30) and uses Eq, (81) with m»0, No consideration is given
to the fact that this procedure creates a singular perturbation problem, the
number of boundary conditions changes for a well-posed problem, and the
solution T actually depends on m and no proof is given that the second and
third integrals in Eq. (81) actually dominate the first integral (they do if
the solution of Eq. (79) is independent of m). In any case, the variational
integral (80) is undefined for m=0 and applications again are equivalent to
Galerkin's method.

All these "principles'" lead to methods which are identical to Galerkin
methods, yet have no functional which is made stationary. They have not led
to new insights. Their main impact is in the imaginative use of trial func-
tions, such as Biot's treatment of heat conduction involving a heat penetra-
tion distance. Usually they are introduced and used to solve simple problems,
in contrast to the Galerkin method which has found widespread use in the past
decade.

5. CONCLUSIONS

Variational principles exist for some, but not all, heat transfer
problems. The important ones are given and compared to quasi-variational
principles and restricted variational principles. In applications Galerkin
methods are often equivalent, and are certainly preferred if no variational
principle exists.
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